

IMMUNOMODULATORY EFFECTS OF BEWO TROPHOBLASTIC CELL-DERIVED EXTRACELLULAR VESICLES ON HUMAN LYMPHOCYTES

<u>Árpád Ferenc Kovács¹</u>, Nóra Fekete¹, Bálint Alasztics², Gábor Joó², János Rigó², Edit Buzás¹, Éva Pállinger¹

¹Dept. of Genetics, Cell and Immunobiology, Semmelweis University ²1st Dept. of Obstetrics and Gynecology, Semmelweis University

PERI-IMPLANTATION AND EARLY FIRST TRIMESTER

Schumacher et al. J Immun 2018; Kim et al. Dev Reprod 2017; Dekel et al. AJRI 2014

THE INVESTIGATION OF IMMUNOMODULATORY PROTEINS FOUND IN BeWo TROPHOBLASTIC-DERIVED iEVS

METHODS (1)

KOVÁCS ET AL. 2018 (10.1038/s41598-018-23706-7)

METHODS (2)

I. BeWo iEV CHARACTERIZATION

CELLDISCOVERER7 single channel view

Calcein-AM and PKH26 stained iEVs (12.5K EV enriched fraction)

GREEN – CALCEIN-AM STAINED IEVs RED – PKH26 STAINED IEVs YELLOW – CALCEIN-AM AND PKH26 DOUBLE STAINED IEVs

I. BeWo iEV CHARACTERIZATION

CELLDISCOVERER7

Calcein-AM and PKH26 stained iEVs (12.5K EV enriched fraction)

After 0.1% TRITON X-100 DETERGENT LYSIS

GREEN – CALCEIN-AM STAINED IEVs RED – PKH26 STAINED IEVs YELLOW – CALCEIN-AM AND PKH26 DOUBLE STAINED IEVs

I. BeWo sEV CHARACTERIZATION

CELLDISCOVERER7 – single channel view

Calcein-AM and PKH26 stained sEVs bound to 3.7 µm latex-aldehyde beads (100K EV enriched fraction)

GREEN – CALCEIN STAINED IEVs RED – PKH26 STAINED IEVs YELLOW – CALCEIN-AM AND PKH26 DOUBLE STAINED IEVs

I. BeWo sEV CHARACTERIZATION

CELLDISCOVERER7

Calcein-AM and PKH26 stained sEVs bound to 3.7 µm latex-aldehyde beads (100K EV enriched fraction)

GREEN – CALCEIN STAINED iEVs RED – PKH26 STAINED iEVs YELLOW – CALCEIN-AM AND PKH26 DOUBLE STAINED iEVs

I. BeWo iEV CHARACTERIZATION

TEM negative stain

I. BeWo iEV CHARACTERIZATION

TEM – CD63 AND HLA-G IMMUNOGOLD LABELLING

I. BeWo sEV CHARACTERIZATION

TEM – CD63 AND HLA-G IMMUNOGOLD LABELLING

I. BeWo EV CHARACTERIZATION

EV high resolution flow cytometry and western blot

6 240nm:CV=0.0 Events=0 Mean=0 Evt/µI=0.0 ROI% of evts=0.0%

I. BeWo iEV and sEV CHARACTERIZATION

Protein and nucleic acid content of BeWo-derived EVs

dsDNA (Qubit assay)

iEV	334 ± 222 ng/mL
sEV	2716 ± 1044 ng/mL
EV poor	700 ng/mL

🛪 miRNA (Qubit assay)

iEV	1180 ng/mL
sEV	17387 ± 5712 ng/mL
EV poor	4340 ng/mL

Protein (Micro BCA assay)

iEV	0.218 ± 0.08 mg/mL
sEV	0.09 ± 0.03 mg/mL
EV poor	0.127 ± 0.04 mg/mL

II. EFFECTS OF IL-6 ON THE LYMPHOCYTE'S GENE EXPRESSION

S T A T 3

5 nours

nours

24 HOUTS

PIAS3

H S P E 1

II. IL-6R DOWNREGULATION

mRNA

Protein

CD4+/CD25+ LYMPHOCYTE SUBSET

Lymphocyte"

Lymphocyte,

SIGNALING UPSTREAM OF STAT3

M A P K 1 4

~* *****

, in er ben O

14 "IE"

~*

RAC

-10

- 5

Relative gene expression o b b b b

5

TLR4 WAS NOT EXPRESSED ON LYMPHOCYTES

Lymphocyte,

~^y^mpⁿoc^{yte}

- 5

5

0

5

NFKB SIGNALING

SIGNALING TARGET GENES

5

- 5

-10

5

HSPE1 EXPRESSION IN HUMAN LYMPHOCYTES

HSPE1 expression after IL-6 + iEV stimulation in immune cell subsets

HSPE1 EXPRESSION IN HUMAN LYMPHOCYTES

Bulk RNA HSPE1 expression

Single-cell RNA-Seq HSPE1 expression

HSPE1 INTERACTION WITH THE MEMBERS OF THE IL-6 SIGNALING PATHWAY

CONCLUSIONS

- BeWo-derived iEVs decrease the IL-6R expression in target lymphocytes both at mRNA and protein levels
- iEVs further decrease the STAT3 mRNA levels
- EVs increase the immunomodulatory HSPE1 levels

Our preliminary data suggest that BeWo-derived iEVs have an immunomodulatory protein cargo which may have an impact on the success of pregnancy.

INVESTIGATING THE MECHANISM OF ACTION OF HSPE1 IMMUNMODULATORY PROTEIN

1. GENERATION OF HSPE1 KO BeWo cell line USING CRISPR-Cas9 SYSTEM BASED MODIFIED sgRNA INDUCING dsDNA breaks in exon 2 of HSPE1 gene

2. FACS based sorting of successfully transfected cells and clone selection

3. HSPE1 gene DNA sequencing and RNA expression validation

ACKNOWLEDGMENT

FACS Team

ÉVA PÁLLINGER Nóra Fekete Borbála Bessenyei Kornél Varga

Kerpel-Fronius Ödön Talent Support *Program*

GYÖRGY FEKETE

EDIT BUZÁS Hargita Hegyesi Tamás Visnovitz Barbara Sódar András Försönits Szabina Mecsei Anita Varga Eszter Tóth Krisztina Pálóczi Sára Tóth Viola Tamási Krisztina Vukman Katalin Szabó-Taylor Márta Békés

1st Dept. of Obstetrics and Gynecology, Semelweis University

> **JÁNOS RIGÓ** Bálint Alasztics

Institut Imagine, Paris

MICKÄEL MENAGÉR

Marine Luka Brieuc Perot Ghaith Abdessalem

SUPPORTED BY THE ÚNKP-18-3-IV-SE-14 NEW NATIONAL EXCELLENCE PROGRAM OF THE MINISTRY OF HUMAN CAPACITIES"

I. BeWo EV CHARACTERIZATION – MISEV2018 CHECKLIST 1

CELLDISCOVERER7

MOCK CONTROL (12.5K fraction)

MOCK CONTROL (100K fraction)

I. BeWo iEV CHARACTERIZATION

EV vesicular nature and size distribution

After Triton X-100 detergent lysis

